

**ORTHODONTICS :
ARTIFICIAL INTELLIGENCE & ROBOTICS**

<u>Patient trust in artificial intelligence for orthodontic advice: A systematic review</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Amer Dent Assoc 2025; 156(11): 931-944
<u>Effectiveness of automated segmentation of maxillofacial structures in cone-beam computed tomography images using artificial intelligence: A systematic review</u>	Int Orthodont 2025; 24 : 101081
<u>Accuracy of artificial intelligence in orthodontic extraction treatment planning: a systematic review and meta analysis</u>	BMC Oral Health 2025; 25(1): 1576
<u>Unveiling the role of artificial intelligence applied to clear aligner therapy: A scoping review</u>	J Dent 2025; 154: 105564
<u>Artificial intelligence in orthodontics: concerns, conjectures, and ethical dilemmas</u>	Int Dent J 2025; 75(1): 20-22
<u>Designing an artificial intelligence system for dental occlusion classification using intraoral photographs: A comparative analysis between artificial intelligence-based and clinical diagnoses</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthoped 2024; 166(2): 125-137
<u>Automatic cephalometric landmark identification with artificial intelligence: An umbrella review of systematic reviews</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dentistry 2024; 146: 105056
<u>Examination of the reliability and readability of Chatbot Generative Pretrained Transformer's (ChatGPT) responses to questions about orthodontics and the evolution of these responses in an updated version</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthoped 2024; 165 (5): 546-55
<u>Clinical evaluation of Artificial Intelligence Driven Remote Monitoring technology for assessment of patient oral hygiene during orthodontic treatment</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthoped 2024; 165 (5): 586-92
Artificial intelligence for treatment planning and soft tissue outcome prediction of orthognathic treatment: A systematic review [can be accessed on DOSS free by logging in on this page]	J Orthodont 2024; 51 (2): 107-19
<u>Artificial intelligence in orthodontics: critical review</u>	J Dent Res 2024; online April 29 doi.org/10.1177/00220345241235606
Cephalometric analysis performance discrepancy between orthodontists and an artificial intelligence model using lateral cephalometric radiographs [can be accessed on DOSS free by logging in on this page]	J Esthet Restor Dent 2024; 36(4): 555-565
An artificial neural network approach for rational decision-making in borderline orthodontic cases: A preliminary analytical observational in silico study [can be accessed on DOSS free by logging in on this page]	J Orthod 2023; 50(4): 439-448

**ORTHODONTICS :
ARTIFICIAL INTELLIGENCE & ROBOTICS**

<u>Blockchain technology and federated machine learning for collaborative initiatives in orthodontics and craniofacial health</u>	Orthod Craniofac Res 2023; 26(Suppl.1): 118-123
<u>Connecting the dots towards precision orthodontics</u>	Orthod Craniofac Res 2023; 26(Suppl.1): 8-19
<u>Novel machine learning algorithms for prediction of treatment decisions in adult patients with Class III malocclusion</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Oral Maxillofac Surg 2023; 81(11): 1391-1402
<u>Artificial intelligence applications in orthodontics</u>	J Calif Dent Assoc 2023; 51(1): 2195585
<u>Artificial intelligence in orthognathic surgery – a narrative review of surgical digital tools and 3d orthognathic surgical planning</u>	J Calif Dent Assoc 2023; 51(1): 2202444
<u>What is the current state of artificial intelligence applications in dentistry and orthodontics?</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Stomatol Oral Maxillofac Surg 2023; 124(5): 101524
<u>In-vivo evaluation of Artificial Intelligence Driven Remote Monitoring technology for tracking tooth movement and reconstruction of 3-dimensional digital models during orthodontic treatment</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2023; 164(5): 690-699
<u>The knowledge, experience, and attitude on artificial intelligence-assisted cephalometric analysis: Survey of orthodontists and orthodontic students</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthoped 2023; 164 (4): e97-e105
<u>Assessment of artificial intelligence-based remote monitoring of clear aligner therapy: A prospective study</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2023; 164 (2): 194-200
<u>Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?</u>	BMC Oral Health 2023; 23: Art 467
<u>AI driven orthodontic devices: Independent tooth movers (ITM)</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Seminars Orthod 2023; 29 (1): 85-89
<u>Virtual-First: A virtual workflow for new patient consultation, engagement and education in orthodontics</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Seminars Orthod 2023; 29 (1): 109-115
<u>Evaluating the accuracy of automated orthodontic digital setup models</u>	Seminars Orthod 2023; 29 (1): 60-67
Artificial intelligence system for automated landmark localization and analysis of cephalometry (request using https://www.smartsurvey.co.uk/s/PJHMV/)	Dentomaxillofacial Radiol 2023; 52 (1): 20220081
<u>The validation of orthodontic artificial intelligence systems that perform orthodontic diagnoses and treatment planning</u>	Eur J Orthodont 2022; 44 (4): 436-44

**ORTHODONTICS :
ARTIFICIAL INTELLIGENCE & ROBOTICS**

<u>Machine learning in orthodontics: Automated facial analysis of vertical dimension for increased precision and efficiency</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2022; 161(3): 445-450
<u>Estimating the size of unerupted teeth: Moyers vs deep learning</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2022; 161(3): 451-456
<u>A machine learning approach to determine the prognosis of patients with class III malocclusion</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2022; 161(1): e1-e11
<u>Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform</u>	BMC Oral Health 2022; 22: Art 132
<u>Cephalometric analysis in orthodontics using artificial intelligence – a comprehensive review</u>	BioMed Res Int 2022: 1880113
<u>Automatic localization of cephalometric landmarks based on convolutional neural network</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2022; 161(3): e250-e259
<u>Machine learning and orthodontics, current trends and the future opportunities: A scoping review</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Am J Orthod Dentofac Orthop 2021; 160(2): 170-192.e4
<u>Machine learning in orthodontics: Challenges and perspectives</u>	Adv Clin Exp Med 2021; 30(10): 1065-1074
Multiclass CBCT image segmentation for orthodontics with deep learning [can be accessed on DOSS free by logging in on this page]	J Dent Res 2021; 100(9): 943-949
<u>Robotic applications in orthodontics: Changing the face of contemporary clinical care</u>	BioMed Res Int 2021: 9954615
<u>Artificial intelligence in orthodontics: Where are we now? A scoping review</u>	Orthod Craniofac Res 2021; 24(S2): 6-15
<u>The validity of an artificial intelligence application for assessment of orthodontic treatment need from clinical images</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Seminars Orthod 2021; 27(2): 164-171
<u>An artificial intelligence based referral application to optimize orthodontic referrals in a public oral healthcare system</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Seminars Orthod 2021; 27(2): 157-163
<u>Artificial Intelligence Driven Remote Monitoring of orthodontic patients: Clinical applicability and rationale</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Seminars Orthod 2021; 27(2): 138-156

**ORTHODONTICS :
ARTIFICIAL INTELLIGENCE & ROBOTICS**

<p><u>Possibilities of artificial intelligence use in orthodontic diagnosis and treatment planning: Image recognition and three-dimensional VTO</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 121-129
<p><u>Artificial Intelligence for radiographic image analysis</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 109-120
<p><u>Applications of artificial intelligence and machine learning in orthodontics: a scoping review</u></p>	Prog Orthod 2021; (22): 18
<p><u>Deep learning and computer vision: Two promising pillars, powering the future in orthodontics</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 62-68
<p>The diagnostic advantage of a CBCT-derived segmented STL rendition of the teeth and jaws using an AI algorithm (request using https://www.smartsurvey.co.uk/s/PJHMV/)</p>	J Clin Orthod 2021; 55(6): 361-369
<p><u>Artificial Intelligence (AI) driven orthodontic care: A quest toward utopia?</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 57-61
<p><u>Evaluation of automated cephalometric analysis based on the latest deep learning method</u></p>	Angle Orthod 2021; 91(3): 329-335
<p><u>A knowledge-based algorithm for automatic monitoring of orthodontic treatment: The Dental Monitoring System. Two cases</u></p>	Sensors (Basel) 2021; 21(5): 1856
<p><u>A deep learning-based approach for the detection of early signs of gingivitis in orthodontic patients using faster region-based convolutional neural networks</u></p>	Int J Environ Res Public Health 2020; 17(22): 8447
<p><u>Machine learning in orthodontics: Introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients</u></p>	Angle Orthod 2020; 90(1): 77-84