

**ORAL CANCER:
ARTIFICIAL INTELLIGENCE & ROBOTICS**

An annotated clinical image dataset for AI classification of malignant and potentially malignant oral lesions	BDJ (2025). https://doi.org/10.1038/s41415-025-9007-6
Molecular biomarkers and machine learning in oral cancer: a systematic review and meta-analysis [Accessible from the Wiley link on this page]	Oral Dis 2025; online 13 Oct doi.org/10.1111/odi.70121
Recent advancements in artificial intelligence-powered cancer prediction from oral microbiome	Perio 2000 2025; online 11 Sep doi.org/10.1111/prd.70000
Artificial intelligence and emerging technologies in diagnosis of oral potentially malignant disorders	BDJ Team 2024; 11(10): 454-456
A deep learning system to predict epithelial dysplasia in oral leukoplakia (request using https://www.smartsurvey.co.uk/s/PJHMV/)	J Dent Res 2024; online 9 Oct doi.org/10.1177/00220345241272048
Application of neural networks for the detection of oral cancer: A systematic review	Dent Med Probl 2023; Apr 26 [Ahead of print]
Clinicians' perception of oral potentially malignant disorders: a pitfall for image annotation in supervised learning [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136(3): 315-321
Reconstruction of head and neck oncological soft tissue defects post-resection using robotic surgery: a systematic review of the current literature [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Br J Oral Maxillofac Surg 2023; 61(8): 514-521
Malignant and non-malignant oral lesions classification and diagnosis with deep neural networks	J Dent 2023; 137: 104657
Early detection of squamous cell carcinoma of the oral tongue using multidimensional plasma protein analysis and interpretable machine learning	J Oral Pathol Med 2023; 52(7): 637-643
Can artificial intelligence (AI) assist in the diagnosis of oral mucosal lesions and/or oral cancer? [Editorial] [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134(4): 413-414
The effectiveness of artificial intelligence in detection of oral cancer	Int Dent J 2022; 72(4): 436-447
Histopathology-based diagnosis of oral squamous cell carcinoma using deep learning [can be accessed on DOSS free by logging in on this page]	J Dent Res 2022; 101(11): 1321-1327
Development of a radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients with tongue cancer [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134(1): 93-101
Segmentation of metastatic cervical lymph nodes from CT images of oral cancers using deep-learning technology	Dento-Maxillfac-Radiol 2022; 51(4): 20210515
Artificial intelligence – can it be used to outsmart oral cancer? [Log in to the BDA home page and follow the link to the BDJ to access]	EBD 2022; 23(1): 12-13

**ORAL CANCER:
ARTIFICIAL INTELLIGENCE & ROBOTICS**

<u>Automatic discrimination of Yamamoto-Kohama classification by machine learning approach for invasive pattern of oral squamous cell carcinoma using digital microscopic images: a retrospective study</u>	Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133(4): 441-452
<u>Performance of deep convolutional neural network for classification and detection of oral potentially malignant disorders in photographic images</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Int J Oral Maxillofac Surg 2022; 51(5): 699-704
Automatic classification and detection of oral cancer in photographic images using deep learning algorithms [can be accessed on DOSS free by logging in on this page]	J Oral Pathol Med 2021; 50(9): 911-918
Application of artificial intelligence and machine learning for prediction of oral cancer risk [can be accessed on DOSS free by logging in on this page]	J Oral Pathol Med 2021; 50(5): 444-450
Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma [can be accessed on DOSS free by logging in on this page]	J Oral Pathol Med 2021; 50(4): 378-384
<u>Deep machine learning for oral cancer: From precise diagnosis to precision medicine</u>	Front Oral Health 2021; 2: 794248
Machine learning and treatment outcome prediction for oral cancer [can be accessed on DOSS free by logging in on this page]	J Oral Pathol Med 2020; 49(10): 977-985
<u>Machine learning predicts lymph node metastasis in early-stage oral tongue squamous cell carcinoma</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Oral Maxillofac Surg 2020; 78(12): 2208-2218
Improvement of oral cancer screening quality and reach: The promise of artificial intelligence [can be accessed on DOSS free by logging in on this page]	J Oral Pathol Med 2020; 49(8): 727-730
<u>Improving oral cancer outcomes with imaging and artificial intelligence</u>	J Dent Res 2020; 99(3): 241-248
A personalized computational model predicts cancer risk level of oral potentially malignant disorders and its web application for promotion of non-invasive screening [can be accessed on DOSS free by logging in on this page]	J Oral Pathol Med 2020; 49(5): 417-426