

DENTAL CARIES: AI & ROBOTICS

Uncovering dental caries heterogeneity in NHANES using machine learning	J Dent Res 2025; online 9 Dec 10.1177/00220345251398027
Development and evaluation of a multi-model stacking approach for caries risk assessment in adults using supervised machine learning	BDJ (2025). doi.org 10.1038/s41415-025-9105-5
Ethical insights into AI-driven caries detection: a scoping review	BDJ Open 2025; 11: Art 78
Evaluation of deep learning for caries detection with fine-grained classification and postprocessing improvements	Int Dent J 2025; 75(5): 100898
AI-driven dental caries management strategies: from clinical practice to professional education and public self care	Int Dent J 2025; 75(4): 100827
Artificial intelligence in early childhood caries detection and prediction: a systematic review and meta-analysis [can be accessed on DOSS free by logging in on this page]	Pediatr Dent 2024; 46(6): 385-394
Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs	J Dent 2024; 147: 105105
Detecting dental caries on oral photographs using artificial intelligence: A systematic review	Oral Dis 2024; 30(4): 1765-1783
Performance comparison of multifarious deep networks on caries detection with tooth X-ray images [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2024; 144: 104970
Detection of caries around restorations on bitewings using deep learning	J Dent 2024; 143: 104886
AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2024; 141: 104821
Impact of artificial intelligence on dentists' gaze during caries detection: A randomized controlled trial [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2024; 140: 104793
Deep learning for tooth identification and numbering on dental radiography: a systematic review and meta-analysis	Dento-Maxillofac Radiol 2024; 53(1): 5-21
Dental student application of artificial intelligence technology in detecting proximal caries lesions [Accessible from the Wiley link on this page]	J Dent Educ 2024; Jan 10 [Ahead of print]
Use of artificial intelligence software in dental education: A study on assisted proximal caries assessment in bitewing radiographs	Eur J Dent Educ 2023; Nov 14 [Ahead of print]
Dental caries detection and classification in CBCT images using deep learning	Int Dent J 2023; Nov 06 [Early view]
Artificial intelligence in the detection and classification of dental caries [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Prosthet Dent 2023; Aug 26 [Early view]

<u>Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs</u>	BMC Oral Health 2023; 23: Art 553
<u>Prediction of pulp exposure before caries excavation using artificial intelligence: Deep learning-based image data versus standard dental radiographs</u>	J Dent 2023; 138: 104732
<u>Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews</u>	Dento-Maxillofac Radiol 2023; 52(7): 20230284
Early childhood predictors for dental caries: A machine-learning approach [can be accessed on DOSS free by logging in on this page]	J Dent Res 2023; 102(9): 999-1006
<u>Influence of artificial intelligence-driven diagnostic tools on treatment decision-making in early childhood caries: A systematic review of accuracy and clinical outcomes</u>	Dent J (Basel) 2023; 11(9): 214
<u>Dental caries risk assessment in children 5 years old and under via machine learning</u>	Dent J (Basel) 2022; 10(9): 164
<u>Predicting treatment nonresponse in Hispanic/Latino children receiving silver diamine fluoride for caries arrest: A pilot study using machine learning</u>	Front Oral Health 2021; 2: 695759
<u>Using a machine learning algorithm to predict the likelihood of presence of dental caries among children aged 2 to 7</u>	Dent J (Basel) 2021; 9(12): 141
<u>Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review</u>	Imaging Dent Sci 2021; 51(3): 237-242
<u>Feasibility of deep learning for dental caries classification in bitewing radiographs based on the ICCMS™ radiographic scoring system</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 135(2): 272-281
<u>Artificial intelligence for caries detection: Value of data and information</u>	J Dent Res 2022; 101(11): 1350-1356
<u>Towards trustworthy AI in dentistry</u>	J Dent Res 2022; 101(11): 1263-1268
<u>Evaluation of a deep learning system for automatic detection of proximal surface dental caries on bitewing radiographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134(2): 262-270
<u>Deep learning for caries detection: A systematic review</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2022; 122: 104115

[Artificial intelligence for caries and periapical periodontitis detection](#) [free to members on Science Direct. If you do not have a login email library@bda.org to request one]

J Dent 2022; 122: 104107

[Cost-effectiveness of AI for caries detection: randomized trial](#) [free to members on Science Direct. If you do not have a login email library@bda.org to request one]

J Dent 2022; 119: 104080

[Caries segmentation on tooth X-ray images with a deep network](#) [free to members on Science Direct. If you do not have a login email library@bda.org to request one]

J Dent 2022; 119: 104076

[Caries detection on intraoral images using artificial intelligence](#)

J Dent Res 2022; 101(2): 158-165

[Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs](#)

Clin Oral Investig 2022; 26(1): 623-632

[An automated machine learning classifier for early childhood caries](#)

Pediatr Dent 2021; 43(3): 191-197

[The ADEPT study: a comparative study of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software](#)

Br Dent J 2021; 231(8): 481-485

[Artificial intelligence for caries detection: Randomized trial](#) [free to members on Science Direct. If you do not have a login email library@bda.org to request one]

J Dent 2021; 115: 103849

[Cost-effectiveness of artificial intelligence for proximal caries detection](#)

J Dent Res 2021; 100(4): 369-376

[Detecting caries lesions of different radiographic extension on bitewings using deep learning](#) [free to members on Science Direct. If you do not have a login email library@bda.org to request one]

J Dent 2020; 100: 103425

Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study [free to members on Science Direct. If you do not have a login email library@bda.org to request one]

J Dent 2020; 92: 103260