

<u>Artificial intelligence in the study of oral lichen planus characteristics: a review</u>	BDJ Open 2025; 11: 91
<u>An annotated clinical image dataset for AI classification of malignant and potentially malignant oral lesions</u>	BDJ (2025). https://doi.org/10.1038/s41415-025-9007-6
Evaluating YOLO for dental caries diagnosis: a systematic review and meta-analysis [Log in to the <u>BDA home page</u> and follow the link to the BDJ Portfolio to access]	EBD 2025; 26: 176
Development of a YOLOv8-based deep learning model for detecting and segmenting dental restorations and dental applications in panoramic radiographs of mixed dentition [Log in to the <u>BDA home page</u> and follow the link to the BDJ Portfolio to access]	BDJ (2025). https://doi.org/10.1038/s41415-025-9009-4
<u>The accuracy and speed of artificial intelligent cephalometric software compared to computer and paper tracing in patients with cleft lip and palate</u>	BDJ (2025). https://doi.org/10.1038/s41415-025-8877-y
<u>Ethical insights into AI-driven caries detection: a scoping review</u>	BDJ Open 2025; 11: 78
Deep convolutional neural networks for early detection of interproximal caries using bitewing radiographs: A systematic review [Log in to the <u>BDA home page</u> and follow the link to the BDJ Portfolio to access]	EBD 2025; 26 (2): 117
The potential of artificial intelligence in the early detection of systemic diseases during routine dental care [Log in to the <u>BDA home page</u> and follow the link to the BDJ Portfolio to access]	BDJ 2025; 239 (3): 168-174
Deep learning for detecting periapical bone rarefaction in panoramic radiographs: a systematic review and critical assessment (request using https://www.smartsurvey.co.uk/s/PJHMV/)	Dentomaxillofac Radiol 2025; 54 (6): 405-19
<u>The effectiveness of a novel artificial intelligence (AI) model in detecting oral and dental diseases</u>	BDJ Open 2025; 11: 62
Temporomandibular joint assessment in MRI images using artificial intelligence tools: where are we now? A systematic review (request using https://www.smartsurvey.co.uk/s/PJHMV/)	DMFR 2025; 54 (1): 1-11
<u>Artificial intelligence and emerging technologies in diagnosis of oral potentially malignant disorders</u>	BDJ Team 2024; 11(10): 454-456
Should artificial intelligence be making a clinical diagnosis or a recommendation for the treating dentist to review? [Log in to the <u>BDA home page</u> and follow the link to the BDJ Portfolio to access]	BDJ In Practice 2024; 37(11): 428-429
In discussion: Using AI to detect dental disease with radiography [Log in to the <u>BDA home page</u> and follow the link to the BDJ Portfolio to access]	BDJ In Practice 2024; 37(11): 416-417

**AI & ROBOTICS:
Radiography, Image Analysis & Diagnosis**

<u>Deep learning system for the differential diagnosis of oral mucosal lesions through clinical photographic imaging</u>	J Dent Sci 2024; online 28 Oct doi.org/10.1016/j.jds.2024.10.019
<u>Artificial intelligent-driven decision-making for automating root fracture detection in periapical radiographs</u>	BDJ Open 2024; 10: 76
<u>Synthetic, non-person related panoramic radiographs created by generative adversarial networks in research, clinical, and teaching applications</u>	J Dentistry 2024; 146: 105042
<u>Fully automated deep learning model for detecting proximity of mandibular third molar root to inferior alveolar canal using panoramic radiographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137 (6): 671-8
<u>Tooth numbering and classification on bitewing radiographs: an artificial intelligence pilot study</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137 (6): 679-89
Accuracy of manual and artificial intelligence-based superimposition of cone-beam computed tomography with digital scan data, utilizing an implant planning software: A randomized clinical study [Accessible from the Wiley link on this page]	Clin Oral Implants Res 2024; online 10 June doi.org/10.1111/clr.14313
<u>Surveying the landscape of diagnostic imaging in dentistry's future: Four emerging technologies with promise</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Am Dent Assoc 2024; 155 (5): 364-78
<u>Automated permanent tooth detection and numbering on panoramic radiograph using a deep learning approach</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137 (5): 537-44
<u>Deep learning for automatic detection of cephalometric landmarks on lateral cephalometric radiographs using the Mask Region-based Convolutional Neural Network: a pilot study</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137 (5): 554-62
<u>Assessment of accuracy and reproducibility of cephalometric identification performed by 2 artificial intelligence-driven tracing applications and human examiners</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137 (4): 431-40
<u>Panoramic imaging errors in machine learning model development: a systematic review</u>	DMFR 2024; 53 (3): 165-72
<u>Artificial intelligence-based automated preprocessing and classification of impacted maxillary canines in panoramic radiographs</u>	DMFR 2024; 53 (3): 173-7
<u>Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review</u>	BMC Oral Health 2024; 24: Art 274
<u>Deep learning for tooth identification and numbering on dental radiography: a systematic review and meta-analysis</u>	DMFR 2024; 53 (1): 5-21

**AI & ROBOTICS:
Radiography, Image Analysis & Diagnosis**

Artificial intelligence and dental panoramic radiographs: where are we now? [Log in to the BDA home page and follow the link to the BDJ and then EBD to access]	EBD 2024; Jan 25 [Early view]
A novel collaborative learning model for mixed dentition and fillings segmentation in panoramic radiographs	J Dent 2024; 140: 104779
Detection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: a retrospective study [can be accessed on DOSS free by logging in on this page]	Quintessence Int 2023; 54(8): 680-693
Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs	Imaging Dent Sci 2023; 53(3): 199-208
An artificial intelligence model for instance segmentation and tooth numbering on orthopantomograms [can be accessed on DOSS free by logging in on this page]	Int J Computerized Dent 2023; 26(4): 301-309
Quantitative level determination of fixed restorations on panoramic radiographs using deep learning [can be accessed on DOSS free by logging in on this page]	Int J Computerized Dent 2023; 26(4): 285-299
Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews	DMFR 2023; 52 (7): 20230284
Artificial intelligence applications for the radiographic detection of periodontal disease: a scoping review	J Calif Dent Assoc 2023; 51(1): 2206301
Accuracy of artificial intelligence-based photographic detection of gingivitis	Int Dent J 2023; 73(5): 724-730
Age determination on panoramic radiographs using the Kvaal method with the aid of artificial intelligence	DMFR 2023; 52(3): 20220363
Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods	DMFR 2023; 52(3): 20220209
Federated vs local vs central deep learning of tooth segmentation on panoramic radiographs [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2023; 135: 104556
The impact of dental artificial intelligence for radiograph analysis [can be accessed on DOSS free by logging in on this page]	Compendium Contin Educ Dent 2023; 44(1): e1-e4
Detecting dental caries on oral photographs using artificial intelligence: A systematic review	Oral Dis 2023; online 1 st July doi.org/10.1111/odi.14659
Accuracy of artificial intelligence-based photographic detection of gingivitis	Int Dent J 2023; online 26 April doi.org/10.1016/j.identj.2023.03.007
Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study	BMC Oral Health 2023; 23: Art 358

**AI & ROBOTICS:
Radiography, Image Analysis & Diagnosis**

<u>Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging</u>	Dentomaxillofacial Radiol 2023; 52 (1): 20220335
<u>Multi-modal deep learning for automated assembly of periapical radiographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2023; 135: 104588
<u>Application of deep learning artificial intelligence technique to the classification of clinical orthodontic photos</u>	BMC Oral Health 2022; 22: Art 454
<u>Artificial intelligence-aided detection of ectopic eruption of maxillary first molars based on panoramic radiographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2022; 125: 104239
<u>Evaluation of a deep learning system for automatic detection of proximal surface dental caries on bitewing radiographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134 (2): 262-70
<u>Artificial intelligence for caries detection: value of data and information</u>	J Dent Res 2022; 101 (11): 1350-1356
<u>Artificial intelligence for caries and periapical periodontitis detection</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2022; (122): 104107
<u>Automated detection of posterior restorations in permanent teeth using artificial intelligence intraoral photographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2022; (121): 104124
<u>Accuracy of an artificial intelligence-driven tool for the detection of small edentulous regions on cone-beam computed tomography</u>	J Dent 2022; 121: 103989
<u>Evaluation of an Artificial Intelligence web-based software to detect and classify dental structures and treatments in panoramic radiographs</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2022; 126: 104301
<u>Can dental fillings affect the performance of an AI-driven innovative tool for automatic tooth segmentation in cone-beam computed tomography: A validation study?</u>	J Dent 2022; 121: 103990
<u>Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images – A validation study</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2022; 119: 104069
<u>Current applications and development of artificial intelligence for digital dental radiography</u>	Dentomaxillofacial Radiol 2022; 51(1): 20210197
<u>Automated chart filing on panoramic radiographs using deep learning</u>	J Dent 2021; 115: 103864

**AI & ROBOTICS:
Radiography, Image Analysis & Diagnosis**

<p><u>A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	J Dent 2021; 115: 103865
<p><u>The ADEPT study: a comparative study of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software</u></p>	BDJ 2021; 231: 481-5
<p><u>Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	J Dent 2021; 114: 103786
<p><u>Caries detection on intraoral images using artificial intelligence</u></p>	J Dent Res 2021 – pub online Aug 20th
<p>Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs (request using https://www.smartsurvey.co.uk/s/PJHMV/)</p>	Dentomaxillofac Radiol 2021; 50(6): 20200172
<p>Multiclass CBCT image segmentation for orthodontics with deep learning [can be accessed on DOSS free by logging in on this page]</p>	J Dent Res 2021; 100(9): 943-949
<p>Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs (request using https://www.smartsurvey.co.uk/s/PJHMV/)</p>	Dentomaxillofac Radiol 2021; 50(5): 20200513
<p><u>Artificial intelligence for detection of periapical lesions on intraoral radiographs: Comparison between convolutional neural networks and human observers</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 131 (5): 610-16
<p><u>The validity of an artificial intelligence application for assessment of orthodontic treatment need from clinical images</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 164-171
<p><u>Possibilities of artificial intelligence use in orthodontic diagnosis and treatment planning: Image recognition and three-dimensional VTO</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 121-129
<p><u>Artificial Intelligence for radiographic image analysis</u> [free to members on Science Direct. If you do not have a login email library@bda.org to request one]</p>	Seminars Orthod 2021; 27(2): 109-120
<p>Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs (request using https://www.smartsurvey.co.uk/s/PJHMV/)</p>	Dentomaxillofac Radiol 2021; 50(1): 20200171

**AI & ROBOTICS:
Radiography, Image Analysis & Diagnosis**

The diagnostic advantage of a CBCT-derived segmented STL rendition of the teeth and jaws using an AI algorithm (request using https://www.smartsurvey.co.uk/s/PJHMV/)	J Clin Orthod 2021; 55(6): 361-369
A deep learning approach to dental restoration classification from bitewing and periapical radiographs [can be accessed on DOSS free by logging in on this page]	Quintessence Int 2021; 52(7): 568-574
Automated feature detection in dental periapical radiographs by using deep learning [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	Oral Surg Oral Med Oral Path Oral Radiol 2021; 13(6): 711-720
Attitude of Brazilian dentists and dental students regarding the future role of artificial intelligence in oral radiology: a multicenter survey	Dentomaxillofac Radiol 2021; 50(5): 20200461
Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Endod 2021; 47(5): 827-835
Cost effectiveness of artificial intelligence for proximal caries detection	J Dent Res 2021; 100(4): 369-376
Detecting white spot lesions on dental photography using deep learning: A pilot study [free to members on Science Direct. If you do not have a login email library@bda.org to request one]	J Dent 2021; (107): 103615
Artificial intelligence in oral and maxillofacial radiology: what is currently possible? (request using https://www.smartsurvey.co.uk/s/PJHMV/)	Dentomaxillofac Radiol 2021; 50(3): 20200375
Evaluation of automated cephalometric analysis based on the latest deep learning method	Angle Orthod 2021; 91(3): 329-335